Monotonic uncertainty measures for attribute reduction in probabilistic rough set model
نویسندگان
چکیده
منابع مشابه
Attribute Reduction in Variable Precision Rough Set Model
The differences of attribute reduction and attribute core between Pawlak’s rough set model (RSM) and variable precision rough set model (VPRSM) are analyzed in detail. According to the interval properties of precision parameter b with respect to the quality of classification, the definition of attribute reduction is extended from a specific b value to a specific b interval in order to overcome ...
متن کاملNon-Monotonic Attribute Reduction in Decision-Theoretic Rough Sets
For most attribute reduction in Pawlak rough set model (PRS), monotonicity is a basic property for the quantitative measure of an attribute set. Based on the monotonicity, a series of attribute reductions in Pawlak rough set model such as positive-region-preserved reductions and condition entropy-preserved reductions are defined and the corresponding heuristic algorithms are proposed in previou...
متن کاملFuzzy-Rough set Approach to Attribute Reduction
Attribute Reduction has a significant role in different branches of artificial intelligence like machine learning, pattern recognition, data mining from databases etc. This paper deals with reduction of unimportant attribute(s) for classification and decision making, using Fuzzy-Rough set. A survey of Fuzzy-Rough set based methods for attribute reduction is presented here.
متن کاملVariable Neighborhood Search for Attribute Reduction in Rough Set Theory
Attribute reduction is a combinational optimization problem in data mining domain that aims to find a minimal subset from a large set of attributes. The typical high dimensionality of datasets precludes the use of greedy methods to find reducts because of its poor adaptability, and requires the use of stochastic methods. Variable Neighborhood Search (VNS) is a recent metaheuristic and have been...
متن کاملAn Innovative Approach for Attribute Reduction in Rough Set Theory
The Rough Sets Theory is used in data mining with emphasis on the treatment of uncertain or vague information. In the case of classification, this theory implicitly calculates reducts of the full set of attributes, eliminating those that are redundant or meaningless. Such reducts may even serve as input to other classifiers other than Rough Sets. The typical high dimensionality of current datab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2015
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2015.01.005